

Cohesive Laws for Adhesive Tapes

Anders Biel

University of Skövde Mechanics of Materials Sweden

Technical University of Denmark Department of Wind Energy Denmark

Promoting the Interests of the Self Adhesive Tape Industry

Introduction

1) Experiment

3) FE-element

2) Cohesive laws

Cohesive law

Layer (adhesive tape) exposed to a load - two kind of deformations

Cohesive law

 $J = \frac{2F\sin\theta}{b}$ $J = \int \sigma \, dw$

Experimental method

 $-\sigma = \frac{\mathrm{d}J}{\mathrm{d}w} = \frac{\mathrm{d}}{\mathrm{d}w} \left(\frac{2F\sin\theta}{b}\right)$

Tensile test machine

- The elongation, w at the start of the adhesive layer is measured with two LVDTs
- The rotation is measured with a shaft encoder
- Constant loading rate

Mode I, Energy Release Rate

Mode I, Cohesive Law

Butt-joint

 $\sigma =$

A

- Constant loading rate 10 µm/s
- Similar result
- Two peak stresses

Stress – elongation relation

Mode I – Transparent

- Adherends made of PMMA
- Transparent tape (3M-4905F)
- Enables the study of crack initiation and growth
- Crack growth is photographed during the experiment

Fracture process

Stress – elongation relation

Fracture process

Stress – elongation relation

Creation of small cavities - stress starts to decrease

Fracture process Stress – elongation relation 0.4 0.35 0.3 00 (ед 0.2 0.2 0.15 0.1 0.05 0 2000 Ο. 1000 3000 4000 *w* = 250 µm *w* (µm)

Number of and the size of the cavities is growing

Fracture process Stress – elongation relation 0.4 0.35 0.3 (MBa) 0.25 0.15 0.1 0.05 0 2000 1000 3000 4000 ίO. *w* = 500 µm *w* (µm)

Number of and the size of the cavities is growing

Fracture process Stress – elongation relation 0.4 0.35 0.3 (MBa) 0.2 0.15 0.1 0.05 0 1000 2000 3000 4000 ίO. *w* = 1000 µm *w* (µm)

Cavities is covering the entire width of the specimen

The growth of the cavities is limited - The stress is increasing

Fracture process

Stress – elongation relation

Cavities start to grow together

Fracture process

Stress – elongation relation

Macroscopic crack is created

Mode II, Energy Release Rate

Mode II, Cohesive Law

DCB experiment for shear

Behaviour for shear is not influenced by cavities

Result and Conclusions

- Adhesive tapes has a low maximum stress but an impressive fracture energy
- Similar result is obtained by use of different methods/geometries
 DCB-specimen – Butt joint - TAST
- The cohesive law for *Mode I* is influenced by the creation, growth and coalescence of cavities
- The cohesive law for *Mode II* is almost bi-linear.

3M VHB-4611F	Mode I	Mode II
Fracture energy	2100 J/m ²	2000 J/m ²
Peak stress	0.5 MPa	0.4 MPa

